喵星之旅-沉睡的猫咪-红黑树

本文建立在两个基础之上:1、会基本的java编程;2、对二叉树是认识的

具体的分类情况分析参看最下方视频连接:初级算法部分

红黑树概念

当一颗二叉树符合了如下要求后,就称之为红黑树:

1、节点具有颜色,只有红色或者黑色,只能是唯一颜色

2、二叉树是有序的,即每一个节点的左节点存值都比当前节点值小,右节点值比当前节点值不小

3、根结点和叶子节点为黑色,叶子节点值的是树的末端没有子节点的节点下一层,是不存有值的,叶子节点是空节点

4、如果一个节点是红色的,父节点必须是黑色的,也就是不存在连续的双红

5、对于黑色节点完全平衡,即从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。

红黑树java实现

1、前置工作

创建一个树类

1
2
3
4
5
public class RBTree{
private static final boolean RED = false;
private static final boolean BLACK = true;
private RBTreeNode root;
}

创建节点类

1
2
3
4
5
6
7
private static class RBTreeNode {
private int value;
private RBTreeNode up;
private RBTreeNode left;
private RBTreeNode right;
private boolean color;
}

节点类中编写遍历方法,方便bug查询和结果展示

1
2
3
4
5
6
7
8
9
10
11
12
13
14
public void show(int count, String lor) {
String s = "";
for (int i = 0; i < count; i++) {
s += " ";
}
s += lor + "[value=" + value + ", color=" + color + "]";
System.out.println(s);
if (left != null) {
left.show(count + 1, "l");
}
if (right != null) {
right.show(count + 1, "r");
}
}

2、插入

由于旋转操作是针对于一般化的二叉树操作,只是方便复用,不会造成效率提升(无论这里的编码还是执行),这里不再封装左右旋转方法,针对红黑树直接处理。

1
2
3
4
5
6
7
8
9
10
11
12
/**
* 添加节点
* @param n
*/
public void add(int n) {
// 创建红色节点
RBTreeNode node = new RBTreeNode(n);
// 查找要插入的位置,并且插入
insert(node, n);
// 调整双红问题
tobalance(node);
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
private void insert(RBTreeNode node, int n) {
RBTreeNode p = this.root;
if (p == null) {
this.root = node;
return;
}
for (;;) {
if (p.value > n) {
if (p.left == null) {
p.left = node;
node.up = p;
break;
} else {
p = p.left;
continue;
}
} else {
if (p.right == null) {
p.right = node;
node.up = p;
break;
} else {
p = p.right;
continue;
}
}
}
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
/**
* 调整双红问题
* @param node
*/
private void tobalance(RBTreeNode node) {
RBTreeNode now = node;
RBTreeNode up = null;
RBTreeNode upup = null;
RBTreeNode top = null;
RBTreeNode n1 = null;
RBTreeNode n2 = null;
RBTreeNode n3 = null;
RBTreeNode n4 = null;
// 获得分类情况
for (boolean flag = true; flag;) {
int n = sortForInsert(now);
switch (n) {//含义参看上面方法说明
case 1:
now.color = RBTree.BLACK;
flag = false;

break;
case 2:
flag = false;

break;
case 3:
up = now.up;
upup = up.up;
upup.color = RBTree.RED;
upup.left.color = RBTree.BLACK;
upup.right.color = RBTree.BLACK;
now = upup;

break;

case 4:
up = now.up;
upup = up.up;
upup.color = RBTree.RED;
upup.left.color = RBTree.BLACK;
upup.right.color = RBTree.BLACK;
now = upup;

break;
case 5:
up = now.up;
upup = up.up;
n1 = up.right;
n2 = upup.right;
top = upup.up;

up.color = RBTree.BLACK;
upup.color = RBTree.RED;

up.right = upup;
upup.up = up;
upup.left = n1;
if (n1 != null) {
n1.up = upup;
}
upup.right = n2;
if (n2 != null) {
n2.up = upup;
}
if (top == null) {
root = up;
root.up = null;
} else {
up.up = top;
if (top.left == upup) {
top.left = up;
} else {
top.right = up;
}
}
flag = false;

break;
case 6:
up = now.up;
upup = up.up;

top = upup.up;
n1 = up.left;
n2 = now.left;
n3 = now.right;
n4 = upup.right;

now.color = RBTree.BLACK;
upup.color = RBTree.RED;

up.right = n2;
if (n2 !=null) {
n2.up = up;
}
up.up = now;
now.left = up;
now.right = upup;
upup.up = now;
upup.left = n3;
if (n3 != null) {
n3.up = upup;
}
if (top == null) {
root = now;
root.up = null;
} else {
now.up = top;
if (top.left == upup) {
top.left = now;
} else {
top.right = now;
}
}
flag = false;

break;
case 7:
up = now.up;
upup = up.up;
top = upup.up;
n2 = now.left;
n3 = now.right;
now.color = RBTree.BLACK;
upup.color = RBTree.RED;

upup.right = n2;
if (n2 != null) {
n2.up = upup;
}
upup.up = now;
now.left = upup;
up.up = now;
now.right = up;
up.left = n3;
if (n3 != null) {
n3.up = up;
}
if (top == null) {
root = now;
root.up = null;
} else {
now.up = top;
if (top.left == upup) {
top.left = now;
} else {
top.right = now;
}
}
flag = false;

break;
case 8:
up = now.up;
upup = up.up;
top = upup.up;
n2 = up.left;
up.color = RBTree.BLACK;
upup.color = RBTree.RED;
upup.right = n2;
if (n2 != null) {
n2.up = upup;
}
upup.up = up;
up.left = upup;

if (top == null) {
root = up;
root.up = null;
} else {
up.up = top;
if (top.left == upup) {
top.left = up;
} else {
top.right = up;
}
}
flag = false;

break;
}
}
root.color = RBTree.BLACK;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
/**
* 对于插入操作,判断分类情况
* @param node
* @return 分类情况:1-根结点,2-父节点黑色, 3-叔叔节点红色,父节点红色,父节点是左节点,4-叔叔节点红色,父节点红色,父节点是右节点,
* 5-叔叔节点不是红色,父节点红色,父节点是左节点,当前节点是父节点左孩子,6-叔叔节点不是红色,父节点红色,父节点是左节点,当前节点是父节点右孩子,
* 7-叔叔节点不是红色,父节点红色,父节点是 右节点,当前节点是父节点左孩子,8-叔叔节点不是红色,父节点红色,父节点是
* 右节点,当前节点是父节点右孩子
*/
private int sortForInsert(RBTreeNode node) {
if (node.up == null) {
return 1;
} else if (node.up.color == RBTree.BLACK) {
return 2;
} else {
RBTreeNode up = node.up;
RBTreeNode upup = up.up;
if (up == upup.left) {// 父节点是左节点
if (upup.right == null || upup.right.color == RBTree.BLACK) {
if (up.left == node) {
return 5;
} else {
return 6;
}
} else {
return 3;
}
} else {// 父节点是右节点
if (upup.left == null || upup.left.color == RBTree.BLACK) {
if (up.left == node) {
return 7;
} else {
return 8;
}
} else {
return 4;
}
}
}

}

3、删除

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
/**
*
* 删除节点,如果存在相同值,随便删除一个
*
* @param n
*/
public void remove(int n) {
// 找到要删除的节点
RBTreeNode del = findNode(n);
if (del == null) {
return;
}
// 删除节点,并返回待处理节点,如过不存在双黑色,则返回null
RBTreeNode doubleBlack = del(del);
if (doubleBlack == null) {
return;
}
// 处理双黑
RBTreeNode d = doubleBlack;
fixdoubleBlack(doubleBlack);
if (d.up.left == d) {
d.up.left = null;
} else {
d.up.right = null;
}

}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
/**
* 查找
*
* @param n
* @return
*/
private RBTreeNode findNode(int n) {

RBTreeNode p = this.root;
for (;;) {
if (p == null) {
return null;
}
if (p.value == n) {
return p;
} else {
if (p.value < n) {
p = p.right;
} else {
p = p.left;
}
}
}

}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
/**
* 删除节点,并返回有双黑色问题的节点
*
* @param del
* @return
*/
private RBTreeNode del(RBTreeNode del) {
// 右两个子节点的转化成有值多一个子节点
if (del.left != null && del.right != null) {
RBTreeNode p = findMax(del.left);
del.value = p.value;
del = p;
}

RBTreeNode top = del.up;
if (del.left == null && del.right == null) {
if (top == null) {
root = null;
return null;
}

if (del.color == RED) {
if (top.left == del) {
top.left = null;
} else {
top.right = null;
}
return null;
} else {
return del;
}
} else if (del.left != null && del.right == null) {
del.left.color = BLACK;
del.left.up = top;
if (top == null) {
root = del.left;
}
if (top.left == del) {
top.left = del.left;
} else {
top.right = del.left;
}
return null;
} else if (del.left == null && del.right != null) {
del.right.color = BLACK;
del.right.up = top;
if (top == null) {
root = del.right;
}
if (top.left == del) {
top.left = del.right;
} else {
top.right = del.right;
}
return null;
}
return null;
}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
/**
* 分类讨论双黑问题
*
* @param doubleBlack
*/
private void fixdoubleBlack(RBTreeNode doubleBlack) {

for (boolean f = true; f;) {

RBTreeNode up = doubleBlack.up;
RBTreeNode top = null;
RBTreeNode b = null;// 兄弟节点
RBTreeNode bl = null;// 兄弟节点左子节点
RBTreeNode br = null;// 兄弟节点右子节点
RBTreeNode n1 = null;
RBTreeNode n2 = null;

int n = sortForDel(doubleBlack);
switch (n) {
case 1:
f = false;
break;
case 2:
up.color = BLACK;
if (doubleBlack == up.left) {
up.right.color = RED;
} else {
up.left.color = RED;
}
f = false;
break;
case 3:
if (doubleBlack == up.left) {
up.right.color = RED;
} else {
up.left.color = RED;
}
doubleBlack = up;
break;
case 4:
top = up.up;
b = up.left;
bl = b.left;
br = b.right;

b.color = BLACK;
up.color = RED;

b.up = top;
if (top == null) {
root = b;
} else {
if (top.left == up) {
top.left = b;
} else {
top.right = b;
}
}
b.right = up;
up.up = b;
up.left = br;
if (br != null) {

br.up = up;
}

break;
case 5:
top = up.up;
b = up.left;
bl = b.left;
br = b.right;

if (bl != null) {
bl.color = BLACK;
}
b.color = up.color;
up.color = BLACK;

b.up = top;
if (top == null) {
root = b;
} else {
if (top.left == up) {
top.left = b;
} else {
top.right = b;
}
}
b.right = up;
up.up = b;
if (br != null) {
br.up = up;

}
up.left = br;
f = false;
break;
case 6:
top = up.up;
b = up.left;
bl = b.left;
br = b.right;
n1 = br.left;
n2 = br.right;

br.color = up.color;
up.color = BLACK;

br.up = top;
if (top == null) {
root = br;
} else {
if (top.left == up) {
top.left = br;
} else {
top.right = br;
}
}
br.left = b;
b.up = br;
br.right = up;
up.up = br;
b.right = n1;
          if (n1 != null) {

            n1.up = b;
           }
          up.left = n2;
          if (n2 != null) {

            n2.up = up;
            }


f = false;
break;
case 7:
top = up.up;
b = up.right;
bl = b.left;
br = b.right;

b.color = BLACK;
up.color = RED;

b.up = top;
if (top == null) {
root = b;
} else {
if (top.left == up) {
top.left = b;
} else {
top.right = b;
}
}

b.left = up;
up.up = b;
up.right = bl;
if (bl != null) {
bl.up = up;

}

break;
case 8:
top = up.up;
b = up.right;
bl = b.left;
br = b.right;

br.color = BLACK;
b.color = up.color;
up.color = BLACK;

b.up = top;
if (top == null) {
root = b;
} else {
if (top.left == up) {
top.left = b;
} else {
top.right = b;
}
}

b.left = up;
up.up = b;
up.right = bl;
if (bl != null) {
bl.up = up;

}

f = false;
break;
case 9:
top = up.up;
b = up.right;
bl = b.left;
br = b.right;
n1 = bl.left;
n2 = bl.right;
bl.color = up.color;
up.color = BLACK;

bl.up = top;
if (top == null) {
root = bl;
} else {
if (top.left == up) {
top.left = bl;
} else {
top.right = bl;
}
}
br.left = up;
br.right = b;
up.up = br;
b.up = br;
up.right = n1;
          if (n1 != null) {

          n1.up = up;
          }
          b.left = n2;
          if (n2 != null) {

          n2.up = b;
          }



f = false;
break;

}

}

}
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
/**
*
* @param doubleBlack
* @return
*
* 1、双黑节点为根结点
*
* 2、兄弟节点和其子节点都为黑色,并且父节点红色
*
* 3、兄弟节点和其子节点都为黑色,并且父节点黑色
*
* 4、兄弟节点为左节点,兄弟节点红色
*
* 5、兄弟节点为左节点,左子节点红色,右子节点无所谓
*
* 6、兄弟节点为左节点,左子节点黑色,右子节点红色
*
* 7、兄弟节点为右节点,兄弟红色,
*
* 8、兄弟节点为右节点,右子节点红色,左子节点无所谓
*
* 9、兄弟节点为右节点,右子节点黑色,左子节点红色
*/
private int sortForDel(RBTreeNode doubleBlack) {
RBTreeNode up = doubleBlack.up;// 父节点
RBTreeNode b = null;// 兄弟节点
RBTreeNode bl = null;// 兄弟节点左子节点
RBTreeNode br = null;// 兄弟节点右子节点
if (up == null) {
return 1;
}
if (up.left == doubleBlack) {
b = up.right;
bl = b.left;
br = b.right;
if (b.color == BLACK && (bl == null || bl.color == BLACK) && (br == null || br.color == BLACK)) {
if (up.color == RED) {
return 2;
} else {
return 3;
}
} else if (b.color == RED) {
return 7;
} else if (br != null && br.color == RED) {
return 8;
} else {
return 9;
}
} else {
b = up.left;
bl = b.left;
br = b.right;

if (b.color == BLACK && (bl == null || bl.color == BLACK) && (br == null || br.color == BLACK)) {
if (up.color == RED) {
return 2;
} else {
return 3;
}
} else if (b.color == RED) {
return 4;
} else if (bl != null && bl.color == RED) {
return 5;
} else {
return 6;
}
}

}

测试结果

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
package club.kittybunn.test;

import club.kittybunny.RBTree;

public class Test {
public static void main(String[] args) {
RBTree tree = new RBTree();
tree.add(1);
tree.add(2);
tree.add(3);
tree.add(4);
tree.add(5);
tree.add(6);
tree.add(7);
tree.add(8);
tree.add(9);
tree.add(10);

tree.show(0, "");
tree.remove(4);
tree.show(0, "");
tree.remove(7);
tree.show(0, "");

}
}

最终完整代码

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
package club.kittybunny;

import java.util.TreeMap;

import javax.sound.sampled.ReverbType;

/**
*
* @author bunny~~我是兔子我会喵,我叫喵星兔。
*
*/
public class RBTree {
private static final boolean RED = false;
private static final boolean BLACK = true;
private RBTreeNode root;

/**
* 添加节点
*
* @param n
*/
public void add(int n) {
// 创建红色节点
RBTreeNode node = new RBTreeNode(n);
// 查找要插入的位置,并且插入
insert(node, n);
// 调整双红问题
tobalance(node);
}

/**
*
* 删除节点,如果存在相同值,随便删除一个
*
* @param n
*/
public void remove(int n) {
// 找到要删除的节点
RBTreeNode del = findNode(n);
if (del == null) {
return;
}
// 删除节点,并返回待处理节点,如过不存在双黑色,则返回null
RBTreeNode doubleBlack = del(del);
if (doubleBlack == null) {
return;
}
// 处理双黑
RBTreeNode d = doubleBlack;
fixdoubleBlack(doubleBlack);
if (d.up.left == d) {
d.up.left = null;
} else {
d.up.right = null;
}

}

/**
* 分类讨论双黑问题
*
* @param doubleBlack
*/
private void fixdoubleBlack(RBTreeNode doubleBlack) {

for (boolean f = true; f;) {

RBTreeNode up = doubleBlack.up;
RBTreeNode top = null;
RBTreeNode b = null;// 兄弟节点
RBTreeNode bl = null;// 兄弟节点左子节点
RBTreeNode br = null;// 兄弟节点右子节点
RBTreeNode n1 = null;
RBTreeNode n2 = null;

int n = sortForDel(doubleBlack);
switch (n) {
case 1:
f = false;
break;
case 2:
up.color = BLACK;
if (doubleBlack == up.left) {
up.right.color = RED;
} else {
up.left.color = RED;
}
f = false;
break;
case 3:
if (doubleBlack == up.left) {
up.right.color = RED;
} else {
up.left.color = RED;
}
doubleBlack = up;
break;
case 4:
top = up.up;
b = up.left;
bl = b.left;
br = b.right;

b.color = BLACK;
up.color = RED;

b.up = top;
if (top == null) {
root = b;
} else {
if (top.left == up) {
top.left = b;
} else {
top.right = b;
}
}
b.right = up;
up.up = b;
up.left = br;
if (br != null) {

br.up = up;
}

break;
case 5:
top = up.up;
b = up.left;
bl = b.left;
br = b.right;

if (bl != null) {
bl.color = BLACK;
}
b.color = up.color;
up.color = BLACK;

b.up = top;
if (top == null) {
root = b;
} else {
if (top.left == up) {
top.left = b;
} else {
top.right = b;
}
}
b.right = up;
up.up = b;
if (br != null) {
br.up = up;

}
up.left = br;
f = false;
break;
case 6:
top = up.up;
b = up.left;
bl = b.left;
br = b.right;
n1 = br.left;
n2 = br.right;

br.color = up.color;
up.color = BLACK;

br.up = top;
if (top == null) {
root = br;
} else {
if (top.left == up) {
top.left = br;
} else {
top.right = br;
}
}
br.left = b;
b.up = br;
br.right = up;
up.up = br;
b.right = n1;
          if (n1 != null) {

          n1.up = b;
          }
          up.left = n2;
          if (n2 != null) {

          n2.up = up;
          }


f = false;
break;
case 7:
top = up.up;
b = up.right;
bl = b.left;
br = b.right;

b.color = BLACK;
up.color = RED;

b.up = top;
if (top == null) {
root = b;
} else {
if (top.left == up) {
top.left = b;
} else {
top.right = b;
}
}

b.left = up;
up.up = b;
up.right = bl;
if (bl != null) {
bl.up = up;

}

break;
case 8:
top = up.up;
b = up.right;
bl = b.left;
br = b.right;

br.color = BLACK;
b.color = up.color;
up.color = BLACK;

b.up = top;
if (top == null) {
root = b;
} else {
if (top.left == up) {
top.left = b;
} else {
top.right = b;
}
}

b.left = up;
up.up = b;
up.right = bl;
if (bl != null) {
bl.up = up;

}

f = false;
break;
case 9:
top = up.up;
b = up.right;
bl = b.left;
br = b.right;
n1 = bl.left;
n2 = bl.right;
bl.color = up.color;
up.color = BLACK;

bl.up = top;
if (top == null) {
root = bl;
} else {
if (top.left == up) {
top.left = bl;
} else {
top.right = bl;
}
}
br.left = up;
br.right = b;
up.up = br;
b.up = br;
up.right = n1;
          if (n1 != null) {

          n1.up = up;
          }
          b.left = n2;
          if (n2 != null) {

          n2.up = b;
          }



f = false;
break;

}

}

}

/**
*
* @param doubleBlack
* @return
*
* 1、双黑节点为根结点
*
* 2、兄弟节点和其子节点都为黑色,并且父节点红色
*
* 3、兄弟节点和其子节点都为黑色,并且父节点黑色
*
* 4、兄弟节点为左节点,兄弟节点红色
*
* 5、兄弟节点为左节点,左子节点红色,右子节点无所谓
*
* 6、兄弟节点为左节点,左子节点黑色,右子节点红色
*
* 7、兄弟节点为右节点,兄弟红色,
*
* 8、兄弟节点为右节点,右子节点红色,左子节点无所谓
*
* 9、兄弟节点为右节点,右子节点黑色,左子节点红色
*/
private int sortForDel(RBTreeNode doubleBlack) {
RBTreeNode up = doubleBlack.up;// 父节点
RBTreeNode b = null;// 兄弟节点
RBTreeNode bl = null;// 兄弟节点左子节点
RBTreeNode br = null;// 兄弟节点右子节点
if (up == null) {
return 1;
}
if (up.left == doubleBlack) {
b = up.right;
bl = b.left;
br = b.right;
if (b.color == BLACK && (bl == null || bl.color == BLACK) && (br == null || br.color == BLACK)) {
if (up.color == RED) {
return 2;
} else {
return 3;
}
} else if (b.color == RED) {
return 7;
} else if (br != null && br.color == RED) {
return 8;
} else {
return 9;
}
} else {
b = up.left;
bl = b.left;
br = b.right;

if (b.color == BLACK && (bl == null || bl.color == BLACK) && (br == null || br.color == BLACK)) {
if (up.color == RED) {
return 2;
} else {
return 3;
}
} else if (b.color == RED) {
return 4;
} else if (bl != null && bl.color == RED) {
return 5;
} else {
return 6;
}
}

}

/**
* 删除节点,并返回有双黑色问题的节点
*
* @param del
* @return
*/
private RBTreeNode del(RBTreeNode del) {
// 右两个子节点的转化成有值多一个子节点
if (del.left != null && del.right != null) {
RBTreeNode p = findMax(del.left);
del.value = p.value;
del = p;
}

RBTreeNode top = del.up;
if (del.left == null && del.right == null) {
if (top == null) {
root = null;
return null;
}

if (del.color == RED) {
if (top.left == del) {
top.left = null;
} else {
top.right = null;
}
return null;
} else {
return del;
}
} else if (del.left != null && del.right == null) {
del.left.color = BLACK;
del.left.up = top;
if (top == null) {
root = del.left;
}
if (top.left == del) {
top.left = del.left;
} else {
top.right = del.left;
}
return null;
} else if (del.left == null && del.right != null) {
del.right.color = BLACK;
del.right.up = top;
if (top == null) {
root = del.right;
}
if (top.left == del) {
top.left = del.right;
} else {
top.right = del.right;
}
return null;
}
return null;
}

/**
* 找出当前节点往下的范围内最大值的节点
*
* @param node
* @return
*/
private RBTreeNode findMax(RBTreeNode node) {
RBTreeNode p = node;
for (;;) {
if (p.right == null) {
return p;
} else {
p = p.right;
}
}
}

/**
* 查找
*
* @param n
* @return
*/
private RBTreeNode findNode(int n) {

RBTreeNode p = this.root;
for (;;) {
if (p == null) {
return null;
}
if (p.value == n) {
return p;
} else {
if (p.value < n) {
p = p.right;
} else {
p = p.left;
}
}
}

}

/**
* 调整双红问题
*
* @param node
*/
private void tobalance(RBTreeNode node) {
RBTreeNode now = node;
RBTreeNode up = null;
RBTreeNode upup = null;
RBTreeNode top = null;
RBTreeNode n1 = null;
RBTreeNode n2 = null;
RBTreeNode n3 = null;
RBTreeNode n4 = null;
// 获得分类情况
for (boolean flag = true; flag;) {
int n = sortForInsert(now);
switch (n) {// 含义参看上面方法说明
case 1:
now.color = RBTree.BLACK;
flag = false;

break;
case 2:
flag = false;

break;
case 3:
up = now.up;
upup = up.up;
upup.color = RBTree.RED;
upup.left.color = RBTree.BLACK;
upup.right.color = RBTree.BLACK;
now = upup;

break;

case 4:
up = now.up;
upup = up.up;
upup.color = RBTree.RED;
upup.left.color = RBTree.BLACK;
upup.right.color = RBTree.BLACK;
now = upup;

break;
case 5:
up = now.up;
upup = up.up;
n1 = up.right;
n2 = upup.right;
top = upup.up;

up.color = RBTree.BLACK;
upup.color = RBTree.RED;

up.right = upup;
upup.up = up;
upup.left = n1;
if (n1 != null) {
n1.up = upup;
}
upup.right = n2;
if (n2 != null) {
n2.up = upup;
}
if (top == null) {
root = up;
root.up = null;
} else {
up.up = top;
if (top.left == upup) {
top.left = up;
} else {
top.right = up;
}
}
flag = false;

break;
case 6:
up = now.up;
upup = up.up;

top = upup.up;
n1 = up.left;
n2 = now.left;
n3 = now.right;
n4 = upup.right;

now.color = RBTree.BLACK;
upup.color = RBTree.RED;

up.right = n2;
if (n2 != null) {
n2.up = up;
}
up.up = now;
now.left = up;
now.right = upup;
upup.up = now;
upup.left = n3;
if (n3 != null) {
n3.up = upup;
}
if (top == null) {
root = now;
root.up = null;
} else {
now.up = top;
if (top.left == upup) {
top.left = now;
} else {
top.right = now;
}
}
flag = false;

break;
case 7:
up = now.up;
upup = up.up;
top = upup.up;
n2 = now.left;
n3 = now.right;
now.color = RBTree.BLACK;
upup.color = RBTree.RED;

upup.right = n2;
if (n2 != null) {
n2.up = upup;
}
upup.up = now;
now.left = upup;
up.up = now;
now.right = up;
up.left = n3;
if (n3 != null) {
n3.up = up;
}
if (top == null) {
root = now;
root.up = null;
} else {
now.up = top;
if (top.left == upup) {
top.left = now;
} else {
top.right = now;
}
}
flag = false;

break;
case 8:
up = now.up;
upup = up.up;
top = upup.up;
n2 = up.left;
up.color = RBTree.BLACK;
upup.color = RBTree.RED;
upup.right = n2;
if (n2 != null) {
n2.up = upup;
}
upup.up = up;
up.left = upup;

if (top == null) {
root = up;
root.up = null;
} else {
up.up = top;
if (top.left == upup) {
top.left = up;
} else {
top.right = up;
}
}
flag = false;

break;
}
}
root.color = RBTree.BLACK;
}

/**
* 对于插入操作,判断分类情况
*
* @param node
* @return 分类情况:1-根结点,2-父节点黑色, 3-叔叔节点红色,父节点红色,父节点是左节点,4-叔叔节点红色,父节点红色,父节点是右节点,
* 5-叔叔节点不是红色,父节点红色,父节点是左节点,当前节点是父节点左孩子,6-叔叔节点不是红色,父节点红色,父节点是左节点,当前节点是父节点右孩子,
* 7-叔叔节点不是红色,父节点红色,父节点是 右节点,当前节点是父节点左孩子,8-叔叔节点不是红色,父节点红色,父节点是
* 右节点,当前节点是父节点右孩子
*/
private int sortForInsert(RBTreeNode node) {
if (node.up == null) {
return 1;
} else if (node.up.color == RBTree.BLACK) {
return 2;
} else {
RBTreeNode up = node.up;
RBTreeNode upup = up.up;
if (up == upup.left) {// 父节点是左节点
if (upup.right == null || upup.right.color == RBTree.BLACK) {
if (up.left == node) {
return 5;
} else {
return 6;
}
} else {
return 3;
}
} else {// 父节点是右节点
if (upup.left == null || upup.left.color == RBTree.BLACK) {
if (up.left == node) {
return 7;
} else {
return 8;
}
} else {
return 4;
}
}
}

}

private void insert(RBTreeNode node, int n) {
RBTreeNode p = this.root;
if (p == null) {
this.root = node;
return;
}
for (;;) {
if (p.value > n) {
if (p.left == null) {
p.left = node;
node.up = p;
break;
} else {
p = p.left;
continue;
}
} else {
if (p.right == null) {
p.right = node;
node.up = p;
break;
} else {
p = p.right;
continue;
}
}
}
}

private static class RBTreeNode {
private int value;
private RBTreeNode up;
private RBTreeNode left;
private RBTreeNode right;
private boolean color;

/**
* 颜色默认红色
*
* @param value 节点值
*/
public RBTreeNode(int value) {
super();
this.value = value;
this.color = RBTree.RED;
}

/**
*
* @param count 树深度
* @param lor 是父节点的左还是右节点,l-左,r-右
*/
public void show(int count, String lor) {
String s = "";
for (int i = 0; i < count; i++) {
s += " ";
}
s += lor + "[value=" + value + ", color=" + color + "]";
System.out.println(s);
if (left != null) {
left.show(count + 1, "l");
}
if (right != null) {
right.show(count + 1, "r");
}
}

}

public void show(int i, String string) {
root.show(0, "");
}
}
文章目录
  1. 红黑树概念
  2. 红黑树java实现
    1. 1、前置工作
    2. 2、插入
    3. 3、删除
  3. 测试结果
  4. 最终完整代码
|